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1    Introduction 

This is the final technical report on a project which proposed to study the applicability 
of several time-frequency representations including the ambiguity function [7, 8, 9, 25, 
35], Wigner-Ville distribution [33] the Gabor transform [19] d.nd the wavele^ transform 
[17, 18] to problems in nonlinear filtering, multichannel signal analysis, and detection 
and feature extraction especial' of transient signals corrupted by non-Gaussian noise. 
The main contributions of this research are 

• The development of adaptive methods for selecting windows or analyzing signals 
targeted to a given application which lead to compact representations and fast, 
numerically stable algorithms for analysis, synthesis and processing. 

• A study comparing the applicability of several time-frequency representations 
to problems in signal detection and feature extraction which includes the effects 
of such representations on processing. 

• The design and comparison of code implementing time-frequency signal repre- 
sentation and synthesis including the discovery of new algorithms with signifi- 
cantly different behavior from those in standard use. 

• The application and construction of optical devices for implementing and pro- 
cessing time-frequency signal expansions. 

Many important application areas including radar and sonar, seismology and 
medical imaging require tools which encode and process joint localized time and 
frequency information. Classical Fourier methods average information taken over en- 
tire signal duration and as such do not directly display this localized information. 
Time-frequency representations offer the potential of analyzing and processing signal 
information in a space where this localized time-frequency information is more readily 
available and can be exploited in nonlinear filtering, pattern recognition, classification 
and detection. 

Due to the untimely death of professor George Eichmann of CCNY, professor 
Yao Li and professor Michael Conner of CCNY directed most of the research into 
applications with direct contract support. Professor Izdor Gertner and professor 
Joshua Zeevi of Rutgers University played collaborative roles in formulating specific 
applications some of which they independently tested. The mathematical theory as 
well as overall direction was the responsibility of professor Richard Tolimieri of CCNY 
who received additional support for this effort from DARPA contract #F49620 89 
C0020. Some aspects of the mathematical research were carried out jointly with 
Richard Orr of Atlantic Aerospace Corporation. 



2    Technical Problem 

Classical Fourier methods are based on the stationarity assumption on the signals and 
Gaussian assumption on noise. Processing techniques are, therefore limited in most 
cases to the application of time-invariant systems to signals. The space of the signal 
(the time domain) and the space of its Fourier transform (the frequency domain) 
contain equivalent information. Filtering can be implemented in either domain by 
convolving the signal with a mask in the time domain or by multiplying the Fourier 
transform of the signal by a filtering functiou. In either case, the effect is to suppress, 
pass through or enhance certain signal frequencies uniformly across the signal. Since 
the Fourier transform averages information taken over all time, all points are equally 
affected. 

The stationarity condition is not valid in many applications and does not faithfully 
represent the underlying natural process. Traditional techniques based on Fourier 
analysis do not exhibit the necessary resolution for dealing with many important 
signal processing tasks including those required in sonar processing where propaga- 
tion and multi-path conditions must be taken into account. Time-frequency repre- 
sentational methods provide signal representations containing joint localized time- 
frequency information offering high resolution and good discrimination capabilities 
when non-stationarities and nonlinear effects distort the signal. Processing in the 
space of this representation can take place which modifies, selects, and distinguishes 
certain frequencies as before but now the effects of this processing vary over time 
providing powerful tools for dealing with nonstationary phenomena. 

A major distinction between Fourier methods and time-frequency methods is that 
in the latter we have the freedom to choose a localizing window or analyzing signal 
relative to which signal information is referenced. The choice of the analyzing signal 
can affect 

• The existence, uniqueness, and compactness of the representation. 

t The speed and stability of computations. 

The feasibility of time-frequency methods depends to a large extent on the existence 
of fast, numerically stable algorithms for synthesis and analysis of signals and for 
processing in the time-frequency domain. 

As in the classical Fourier analysis of signals, performance is greatly affected by 
strategies which exploit known signal information. For example signal information 
as to time duration and bandwidth are essential for selecting a sampling rate which 
adequately represents the signal. The matched filter is the optimum signal processing 
strategy for signal detection and feature extraction in noisy environments when the 
signal is exactly known. Preprocessing strategies for time-frequency representations 
must give information as to the form and shaping of the window to be used in the 
analysis. We have based such strategies on the Zak transform and the ambiguity 
function. 



3    Technical Results 

We have attacked the problem of designing efficient time-frequency computational 
tools by 

• Developing selection procedures which shape an analyzing signal from a priori 
and precomputed front-end computations on input data based on Zak transform 
and ambiguity function. 

• Implementing and comparing code for computing Gabor coefficient> based on 
methods found in [3, 11]. This code uses fast FFT algorithms developed under 
DARPA contract #F49620 89 C0020. We have determined that the algorithm 
based on the deconvolution formula in [4] produces the fastest code and have 
applied this code using the one-sided exponential window to transient signal 
detection. 

• Developed a new algorithm for computing classical Gabor coefficients based 
on the concept of a generalized biorthogonal. This algorithm "delays" the ef- 
fects of zero theorem and provides for numerically stable computation of Gabor 
coefficients locally around known Gabor coefficients. 

• Developed the proper form of finite discrete Gabor transform by periodizing 
and sampling and presented the results in [10, 32]. 

We have applied these results to 

• Gabor representational schemes for submicron filtering, image reconstruction 
and image transfer for application to submicron lithography 

• Designing and constructing optical devices to implement time-frequency repre- 
sentations and to carry out processing on such representations including tran- 
sient signal detection. 

3.1    Zak Transform Selection Procedures 

The study of selection procedures in the case of thi Gabor transform has been earned 
out in some detail. Any Gabor scheme which seeks to apply to all square integi able 
signals will be limited by the Heisenberg uncertainty principle. The zero theorem 
[6] and more generally Bahan's theorem are concrete ramifications of the unct i uainty 
principle which directly obstruct general representation schemes, either by restricting 
the class of analyzing signals or by requiring oversampling i. e. lattices whose fun- 
damental region area is less than one. The effort in this research was directed to the 
design of adaptive procedures which used front-end computation of the Zak trans- 
form of incoming data as tools for choosing optimal windows. The Zak transform [36] 
has played a major role in this research. It his played a crucial role in much of the 



theory and application of time-frequency representations including the design of fast 
algorithms for determining Gabor coefficients [3, 4, 11, 12]. The numerical stability of 
these algorithms is limited by the Zero-theorem [5]. These algorithms usually involve 
division by the Zak transform of the analyzing signal which if sufficiently smooth 
must have a zero. Results in [1, 30] suggests methods for classifying and reducing the 
negative consequences of the Zero-theorem. 

The Zero-theorem is intimately tied to the Heisenberg uncertainty principle. One 
of the first proofs [5] rests on the non-abelian group structure of the Heisenberg group. 
In [21], we review the function theory on the Heisenberg group, more accurately on 
certain compact nil-manifolds coming from the Heisenberg group called Heisenberg 
manifolds and apply this theory to the problem of designing adaptive robust Gabor 
procedures. Many of these results are special to the Gaussian and make use of detailed 
knowledge of the Taylor series expansion of the Zak transform of the Gaussian at its 
unique zero in the unit square. Starting with the Gaussian, we can define, in a 
natural manner, a family of Gaussian-like analyzing signals parameterized by the 
number and the position of Zak transform zeroes. In fact, several families can be 
constructed offering some variation in the local behavior of the Zak transform at 
vanishing points and global envelope characteristics. 

These results provide powerful tools for matching analyzing signal to application 
signal. In [5, 30], this led to a detailed description of the oversampling needed to 
remove the numerical instability of expanding arbitrary square integrable signals as 
integer time-frequency translates of the Gaussian. A more exhaustive analysis [30] 
established sufficient conditions on signals for the existence of good Gabor expansions. 

Recent work has extended these results to signals other than the Gaussian such 
as Hermite functions [1], one-sided exponentials and Legendre functions. As with the 
Gaussian a family of analyzing signals can be associated to each signal of a type. 
The analyzing signals in a family can as before be parameterized by the number and 
the position of Zak transform zeroes however as we move through the families we 
have a variety of local behavior at the Zak transform zeroes and global Zak transform 
envelope characteristics. 

3.2    Ambiguity Function Selection Procedures 

In the early 1960s, research summarized in [16] into the Radar ambiguity function 
yielded a rather a complete analysis and characterization of the auto- and cross- 
ambiguity function. In [24], this research was coupled with the Poisson summation 
formula to derive fundamental formulas which lie at the heart of the theory of Gabor 
expansions. These formulas relate the energy of the discrete cross-ambiguity function 
of two signals over a lattice with the in: sr product of the discrete auto-ambiguity 
function of the signals over a complimentary lattice. The lattice in the former defines 
the lattice of time-frequency translates of the analyzing signal in the corresponding 
Gabor expansion.  Frame conditions on analyzing signals and lattices imply a good 



representation theory for all square integrable functions. We will extend the role 
played by these fundamental formulas and use them to provide tools for shaping 
good analyzing signals and determining good time-frequency translation lattices for a 
given application. Although at present these results are more speculative as compared 
to Zak transform results, we expect that significant contributions to both theory and 
application of Gabor expansions will be achieved. 

3.3 New Algorithms 

In [11, 12, 13, 14], the Zak transform was used to construct a biorthogonal of an 
analyzing signal. This led to a computational procedure for computing Gabor co- 
efficients by taking inner products relative to a biorthogonal but the Zero theorem 
once again created problems. For analyzing signals having continuous Zak trans- 
forms the biorthogonal need not be square- integrable. In the case of the Gaussian, 
we have introduced the concept of a generalized biorthogonal [32] which depending 
on certain moment conditions can be taken as smooth as desired but at a cost. The 
smoother the generalized biorthogonal the more complex and numerically unstable 
the algorithm computing Gabor coefficients. Direct inner product computations are 
no longer sufficient and certain difference equations must solved. However Gabor co- 
efficient computation is localized in the sense that if a Gabor coefficient is known then 
in some region in the lattice around this Gabor coefficient, other Gabor coefficients 
can be efficiently computed. The extent to which this statement can be made precise 
and the role of such an algorithm in applications is currently under study. 

3.4 Optical Processing 

One aspect of this program was trying to identify the role of optics in the implemen- 
tation and processing of wavelets and other promising decompositions. Through our 
two years of theoretical and experimental investigations, it has become quite clear 
that for many signal processing and radar applications, optics may play an important 
role to speed up the entire process. Our findings have been published in five refer- 
eed journal articles with one additional article in the process of publication. A brief 
summary of the findings is give below. 

Gabor expansion of one dimensional short signal sequences has been generated 
optically for the first time. Through the use of the biorthogonal signal of the selected 
Gabor window, the expansion of an arbitrary signal upon the window was performed 
optically using a modified optical ambiguity function generator. In our experimental 
effort, the single-sided exponential function was selected as the Gabor window for the 
detection of transients. An acousto-optic processor to implement the approach was 
proposed and conceptually demonstrated. 

Wavelet expansion which can overcome many disadvantages inherent to the Ga- 
bor expansion was also studied for its optical implementation for the first time.  It 



was found that optics is quite suitable to generate and display both the direct and 
the inverse wavelet transforms in parallel. Unlike the digital computer-based imple- 
mentation which prefers the course-to-fine serial generation procedure, using optics, 
the one-dimensional to two-dimensional coordinate expansion could be performed in 
parallel and on-the-fly. An optical processor to process one dimensional short data 
sequence was first built and tested. The processor contains one DC band and four 
other higher frequency channels. The decomposition of a spatial chirp signal into 
these bands and the reconstruction of the chirp using the wavelet decomposed signals 
were successfully performed for the first time. 

A further step was taken toward identifying the suitability of using optics for the 
multichannel signal analysis. Both the Gabor and the wavelet transforms were studied 
in terms of their complexity of optical implementations in general. Both one and two 
dimensional signal cases were assumed. It was found that the role of optics in the 
Gabor case was to process the ambiguity function necessary for the implementation. 
While for the signal recovery, although it is not impossible, it is very difficult to use 
the optical method. Also, due to the use of coherent processing, it is the square of, 
not the Gabor coefficients themselves, which is finally generated. Thus, the optical 
methods are more suitable for the detection of certain signal signatures based on 
the selected window function than using it as a mathematical expansion tool. On 
the other hand, optics finds itself promising for generating both direct and inverse 
wavelet transforms. This is the case for processing both the one and two dimensional 
signals. A detail comparison of the space-bandwidth product related, filter dynamic 
range limited, as well as the misalignment caused performance degradations for both 
applications was performed. 

To extend the method of processing the Gabor and wavelet transforms of one 
dimensional short signal sequence to a more practical situation where the one dimen- 
sional long data sequence are encountered, a novel optical processor concept which 
scans the input long daia sequence into a two dimensional format was proposed and 
numerically simulated. Using the Chinese remainder theory with the unity difference 
between the two selected relative modul', the scanning pattern can be physically im- 
plemented through a modification of any raster-scan display device. The mapped 
signal can then be optically processed in a standard optical image processor for its 
wavelet or Gabor processing. Advantages and shortcomings were analyzed. 

3.5    Applications to Submicron Lithography 

Analytic and algorithmic methodologies were developed for submicron filtering, image 
reconstruction, and image transfer in vector and scalar forms for study as to their 
applicability to micron lithography. This study contained two parts. In the first a 
projected signal had to be addressed in a scalar as well as a vector form and a Gabor 
representation of the final line profile had to be computed. The second task included 
a representation of electron beam applied to submicron masks, such that optimal 



intensity evaluation at each pixel will allow analysis of improved resolution. 
We will describe in detail the several stages of the study. 
In first part, we developed and formulated the algorithm or the aerial image 

methodology in a scalar form for partially coherent light with .5 micron line width. 
The partial coherence was addressed through the "mutual coherence function" that 
correlates the various light source elements. After performing a stationary phase 
calculation, we obtained this function in terms of Bessel function of order 1. Each 
entry in the four-fold integral final result is a two-fold integral. Thus, a fast algorithm 
was needed to avoid extremely expensive computations. Variable Gauss-Legendre 
quadrature with accuracy control coupled with the interior integrations order was 
chosen and implemented. 

In the next stage, the aerial image for vectorial electric field was investigated and 
implemented. The rays were traced through the entrance as well as the exit pupil. 
The system is more complicated due to two extra integrations. We decided to lower 
the order of the innermost loops and check their accuracy via an averaged monte-carlo 
simulation of the integral. The polarization partial coherence matrix was formulated 
and the necessary algorithm developed and tested. 

In the next stage, attention was given to the exposure systems of electron beams. 
We expressed the aerial image of E-beam as a linear combination of double Gaussian 
in each pixel due to back-scattering. The aerial image is thus expressed as a Gabor 
expansion and is ready made for data compression algorithm. The Haar basis and its 
corresponding wavelet basis failed to achieve optimal response. A projection system 
has been implemented, using smooth "hat" functions basis with correct polarity, thus 
allowing optimal resolution and data compression. A new data compression algorithm 
was developed. 

The aerial image algorithms were generalized to include models with time-dependent 
absorption. The mechanism employed is a time dependent filter. In other words, the 
filter is being degraded gradually within its lifetime. The kinetics of the filter is ob- 
tained via fifth order Adams-Bashforth algorithm, and the field is refiltered at each 
time step. The necessary algorithm has been developed and implemented. 

A vector Maxwell equation solver has been developed using spectral elements 
methods. An image is constructed and is deblumed through the dynamic filter devel- 
oped earlier. The moving format is expressed as an eikonal system with a curvature 
controlled velocity of propagation, and this formalism lends itself to self improvement 
via a WKB scheme with the leading term obtained from the eikonal system. The 
corresponding PDEs have been analyzed. 

The previous results have been integrated into a system of nonlinear reaction- 
diffusion equations for the post-exposure baking and a second system of dissolution. 
The reaction part has been solved analytically, and all the filtered concentrations are 
expressed explicitly in terms of the first concentration, which in turn is expressed 
implicitly. A very fast LV-decomposition algorithm has been developed to address 
finite-size effects while diffusion is deconvolved using our earlier bases. 



4    Summary of Results 

» Code in Fortran and C implementing adaptive selection of time-frequency shifted 
Gaussian and Hermite functions as analyzing signals relative to an incoming sig- 
nal. 

• Code testing the reliability of the adaptive selection procedure with comparisons 
to direct standard methods. 

• Code computing generalized biorthogonals and testing the numerical stability 
and robustness of Gabor coefficient computation. 

• An acousto-optic processor to implement Gabor coefficient computation of one- 
dimensional short signal sequences. The single-sided exponential was selected 
as th  Gabor window for the detection of transients. 

• An optical processor was built and tested to compute the wavelet expansion 
and its inverse. 

• detail comparison of Gabor and wavelet transforms was undertaken in term of 
their complexity of optical implementations. 

• Methods proposed and analyzed for optical processing of Gabor and wavelet 
transforms of one-dimensional data sequences using the Chinese remainder the- 
orem. 

• Analytic and algorithmic methodologies were developed for submicron filter- 
ing, image reconstruction, an image transfer and were applied to submicron 
lithography. 

5    Announced Results 

The participants in this project have published their results in many papers both in 
refereed journals and in invited articles in proceedings. We have listed most significant 
below. 

5.1    Digital Computations 

1. L. Auslander, M.An, M.Conner I.Gertner and R.Tolimieri, Fine Structure of the 
Classical Gabor Approximation, IMA, 39 (2), 11-21, Springer-Verlag, 1992. 

2. L.Auslander, C.Buffalano, R.Orr and R.Tolimieri, A Comparison of the Gabor 
and Short-time Fourier Transforms for Signal Detection and Feature Extraction 
in Noisy Environments, preprint, 1990. 



3. L.Auslander, I.Gertner and R.Tolimieri, The Discrete Zak Transform applica- 
tion to Time-frequency Analysis and Synthesis of non-stationary signals, IEEE 
Trans. Signal Process., 39 (4), 825-835, April, 1991. 

4. —, The Finite Zak Transform and the Finite Fourier Transform, IMA, 39 (2), 
Springer-Verlag, 1992, 21-36. 

5. L.Auslander, and R.Tolimieri, On Finite Gabor Expansions of Signals, IMA 
Proceedings on Signal Processing, 22, Springer-Verlag, Berlin/New York, 1990. 

6. Conner,M., Tolimieri, R., and Orr, R.S., A New Algorithm for Computing Gabor 
Coefficients SPIE San Diego, 1991, Special edition of the Journal of Optical 
Communications, to be Published. 

7. Orr, R.S. and Tolimieri, T., Poisson Summation, the Ambiguity Function and 
the Theory of Weyl-Heisenberg Frames, Submitted to IEEE Trans. IT, July 
1990. 

8. Tolimieri, R., Problems in Gabor Representation, Proceedings of NATO, ASI 
1992. 

5.2    Optical Results 

1. Li, Y., Optics for Wavelet Processing, (Invited Talk: FA2) Optical Society of 
America Annual Meeting, Albuquerque, NM, Sept. 21- 25, 1992. 

2. Zhang, Y and Li, Y., Optical determination of Gabor coefficients of transient 
signals, Optics Letters, 13 1991, 1031-1033. 

3. —, An optically implementable algorithm for convolution correlation of long 
data streams. Optics Communications, 85, 1991, 473-480. 

4. Zhang, Y., Li, Y., Kanterakis, E. G., Katz, A., Lu, X. J. and Tolimieri, R. 
Optical realization of wavelet transform for a one- dimensional signal, Optics 
Letters, 14, 1992, 210-212. 

5. Lu, X. J., Katz, A., Kanterakis, E. G., Li, Y., Zhang, Y., and Caviris, N. P. 
Image analysis via optical wavelet transform, Optics Communications, 1992 in 
print. 

6. Zhang, Y. and Li, Y., Coherent optical processing of Gabor and Wavelet expan- 
sions of ID and 2D signals. Optical Engineering, 31, 1992, 1865-1885. 

7. Zhang, Y. Li, Y. and Caulfield, H. J. Optical implementation of long data stream 
convolution, submitted to Applied Optics for publication. 
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Appendix 

A    Zak transform 

For simplicity, we will describe several basic properties of the Zak transform of one- 
dimensional signals. Multidimensional extensions follow by the same arguments [21, 
31, 34, 37, 38]. 

The Zak transform of & signal f G L2{$i) is the function of two variables Z{f){x,y), 
x, y € 9?, defined by the formula 

Inikx 

k 

Z{f){x,y) can be interpreted as the discrete Fourier transform at x of the sequence 
f{y + k), k £ Z and hence contains joint time-frequency information about the signal 
/. The functional equations 

Z{f) = {x + l,y) = Z{f){x,y) 

Z{f) = {x,y + l) = e-2™Z{f){x,y) 

imply that the Zak transform is completely determined by its values on the unit 
square. We define the inner product of two Zak transforms by the formula 

< Z{h\Z{U) >= f f Z{h)[x,y)Z*{h){x,y)dxdy. 
Jo Jo 

Theorem 1 For fi and fi in L2{$t), 

<f1,f2> = <Z{f1),Z{f2)> 

Proof: 

<z(/1),z(/2)> = ZT. t My+tiftiy + Wv t eMU-k)xdx 
j    - ./o Jo 

= T. t My+JWiy + Wy 
j   JO 

=   r fi{y)my)dy 
J—OO 

=     </l,/2>. 

The following theorem characterizes the space of Zak transforms. 
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Theorem 2 If 

I   I   \F(x,y) I2 dx4y < or. 
Jo Jo 

F{x + l,y) = F{x,y) 

Fix,y + l) = e-2™Fix,y) 

then F is the Zak transform of a unique function f € Z/2(3?). 

Proof:    By the functional equations, we have 

Fix^^Myy™*, 
r 

where 
My+V^Uiiy). 

The Zak transform and the Fourier transform are related by the following formula. 

Theorem 3 
Z{f){x,y) = e2^yZ{f){-y,x) 

Proof:    Apply the proceeding formula to 

G{x,y) = e-^i^Zif){-y,x). 

Define 

Unit) = fit - n)e2*imt,   m, n € Z. 

Theorem 4 
Z{fmn){x,y) = Zif){x,v)eM^+m^ 

Proof: 

Efmniv + ky*** = Y,fiy + k-"yKimye2*ikx 

k k 

=   (2 fiv + k)e2irik)e2H{nx+mvl 
k 

The application of the Zak transform to time-frequency representation is the con- 
sequence of two fundamental formulas which we state without proof. 

1st Fundamental Formula 

Z(f){x,y)Z*{g)ix,y) = E E < /^- > e2***3*^ 

Applications 
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• Z{f){x,y) vanishes only on a set of measure 0 implies the set 

{gmn-     m,neZ} 

spans Z/2(3R). 

• | Z{g){x,y) |= 1, i.e., iff the set {gmn :     m,n £ Z} is an orthonormal basis of 
L2i&). 

The second fundamental formula is directly tied to Gabor expansions, i.  e., ex- 
pansions of the form 

/ = 2 E bmngmn. (1) 
mZZneZ 

We will assume that the coefficients in (1) satisfy 

E E I 6m„ |2< 00. (2) 
mGZ n£Z 

In this case, the series in (1) converges to / in L2{$t). 
Applying the Zak transform to both sides of (1) we have 

2nd Fundamental Formula 

Z{f){x,y) = Z{g){x,y) £ ^ ö^e2^"*^. 
m€Z n£Z 

The series converges in L2(I2) to a doubly periodic norm-square summable function 
over the unit square. Multiplying both sides by Z*{g){x,y), we have the following. 

EE < /'Smn > e2"(-+m«) =| Zi9){x, j/) |2 E Eamne2*iinx+my). (3) 
m     n m     n 

The right hand side can be viewed eis a convolution. 
For a fixed analyzing signal g, a signal / G L2{$i.) need not have an expansion 

satisfying (2). The second fundamental formula is the main tool for deriving criteria 
on / and g guaranteeing such an expansion and for designing algorithms computing 
the Gabor coefficients 6mn, m, n 6 Z. In fact, if the quotient 

^) (4) 

is norm-square summable over the unit square then the Fourier coefficients 

6™ = // l\f\lX'y\e-2^^dxdy (5) 
JlJl Z{g){x,y) 
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satisfy (1) and (2). The problem is that if Z{g) is continuous then it must vanish 
at some point, a result proved in [5] and henceforth called the Zero theorem. The 
quotient (4) is not necessarily norm-square summable. 

The Zero theorem also lies at the heart of the synthesis problem of a signal from 
its short-time Fourier transform. The inner products, < f,gmn >, m, n € Z, de- 
termine the product Z{f)Z*{g) a. e. but division by Z{g) t< recover Z{f) is not 
necessarily numerically stable. For example, uniformly sampi'^g both sides of the 
first fundamental formula over the unit square can produce samples of the product 
in terms of the 2-dimensional finite Fourier transform of periodized inner products 
but as we increase the resolution, zeros of Z{g) will be approached whenever Z{g) is 
continuous. Nonuniform sampling to avoid these zeros results in numerically unstable 
computation of product samples. 

For fixed g € L2{$i), with Z{g) continuous, there exists / € Z2(9?) which do not 
admit Gabor expansions of the form (1) and which cannot be resynthesized from 
short-time Fourier transform. The special case of <? = e-irt was considered in detail 
in [5, 30], where it was found that every / € L2(3?) with Z{f) continuous has a 
Gabor expansion if we allow half integer shifts in the time or frequency variable, i.e., 
n ranges over |Z. The main results in [30] give a precise count of the number of 
half integer shifts required to maintain various degrees of smoothness in the Gabor 
expansion. In [18], along with many other results, an account of similar ideas were 
presented in the language of frames. 

In the following subsections, we will review more deeply these ideas and extend 
them to provide tools for an adaptive Gabor theory and for the design of efficient 
Gabor expansion implementation. 

A.l    Analyzing Signal Parameters 

Two important analyzing signal parameters are 

• the zero set of their Zak transform 

» the deviation of the absolute value of their Zak transforms from unity. 

The zero set affects the existence and compactness of Gabor expansions while the 
deviation is a measure of the defect from orthonormality of the wavelet system. 

The results in [5] provide a parameterized family of analyzing signals characterized 
by having Zak transforms with unique 'analytic' zeros in the unit square. These 
results can be extended to define larger families of Gaussian-based analyzing signals 
having more intricate and pre-assigned zero sets and indicate general methods for 
constructing non-Gaussian based analyzing signals. 

The Zak transform of the Gaussian g{t) = e"*'  can be written as 

Z{g){x,y) = e-Ty2u{x,y) 
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where v is the classical theta function of characteristic (0,0) 

"(*) = E e-^t2™*,     z = x + iy- 

It is well-known that u is an entire function having a unique zero in the unit square 
at x = y = |. 

In general, if guv{t) = g{t — v)e'i'K,ut, u,v £ $t, then 

Zi9uv)ix,y) = e2*iu«Z{g){x + u,y- v). (6) 

Applying ( 6) to the Gaussian g{t) = e~vt , we see that the collection 

{guv :     0<u,v <l} 

of time-frequency translates of the Gaussian have Zak transforms with unique 'ana- 
lytic zeroes' in the unit square and each point in the unit square is the Zak transform 
zero of exactly one function in the collection. 

Gaussian-based signals having more complicated zero sets can be constructed 
using the following formula 

Z{gmn)ix,y) = eu^+m^Zig){x,y),    m,n € Z. (7) 

li P{x,y) is the trigonometric polynomial 

P{x,y) = j:E"r *27ri(nx+my) 
'■mn e 

m     n 

where the double summation is finite, then ( 7) implies 

P(x, y)Z{g){x, y) = £(]£ £ amngmn){x, y). (8) 

The zero set of the Zak transform of 

m     n 

is the union of the zero set of Z[g){x,y) and the zero set of the trigonometric poly- 
nomial P{x,y). 

This result can be used to construct signals having preassigned Zak transform 
zero sets. For fixed g with Z{g) continuous, the zero set of Z{g) is also included. 
Applied to the Gaussian case, g(t) = e_7r' , we can build an extensive collection of 
signals with a wide variety of Zak transform zero sets. 

By creating a families of signals having a wide range of Zak transform zero sets, we 
introduce into the selection procedure a criteria based on matching signal to analyzing 
signal Zak transform zero sets. One measure of the effectiveness of this approach will 
be the compactness of the representation and the efficiency of the computation. 

Example 1     The trigonometric polynomial 
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P1ix,y) = l + it™ - e2*i(x-y) - ie-2'iy 

has exactly two zeros in the unit square, at (0,0) and (|, |). The product Pi{x,y)Z{g){x,y), 
g = e~rt , has a second order zero at (r, |) and a first order zero at (0,0). Translating 
g gives rise to a product which has three first order zeros. 

Example 2     The trigonometric polynomial 

P2{x,y) = 2 + ie2*ix + ie2*iy 

has exactly one zero in the unit square, at (jk j). The product P2{x,y)Z{g){x,y), 
g = e_7rt , has first order zeros at (j, j) and (=•, |). 

The general results ( 6), ( 7) and ( 8) can be applied to signals other than the 
Gaussian. In preliminary studies, we have carried out these constructions on such 
'naturally' defined signals as one-sided exponentials, Hermite functions and finite 
interval restrictions of periodic signals. We intend to increase the list of naturally 
defined signals to other special functions and to include digital signals which have 
played important roles in applications. 

In [5], partition of unity arguments matched to the underlying Heisenberg group 
structure were used to prove several important results. These ideas can also be used to 
construct signals whose Zak transforms have pre-assigned zero sets and pre-assigned 
Taylor expansions. The feasibility of constructing signals in this way is under study. 

In general, the collection 

{fl'mn :     m,n e Z} 

is not orthogonal, as one can see from the Gaussian g{t) = e""' . The condition for 
orthonormality 

\Zig){x,y)\=l,    o.e., (9) 

is a simple consequence of the first fundamental formula applied to f = g: 

I Z{g){x,y) |2= EE < 9,9mn > e2*****^. 
m    n 

By the zero theorem, if Z{g) is continuous then ( 9) can not hold. A more exact 
statement about the continuity of Z{g) expressed in terms of rate of decay of g and 
orthonormality is given by Balian's theorem. There are several ways of measuring 
defect from orthonormality. For example 

T f1 II Z{g){x,y) |2 -1 |2 dxdy = EE l< 9,9™ >|2, 
•'0   •'0 m     „ 

where J2m Hn denotes summation over all m,n G Z except m = n = 0, measures the 
energy in the norm-square sense of the inner product < g,gmn >, m,n e Z, except 
m = n = 0. 
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A.2    Selection Procedure 

A signal / has a Gabor expansion 

/=   S   Eomnömn (10) 
m£Z nEZ 

satisfying 

E   E   I «mn |2< OO 
m£Z n£Z 

if and only if 

^P-eLV2)- (ii) 
The Gabor coefficients in ( 10) are the Fourier coefficients of ( 11). In general, the 
smoother the quotient, the more rapid the decay of the Gabor coefficients and the 
more 'compact' the Gabor expansion ( 10) in the sense that finite partial sums should 
better represent /. In [1], a computer experiment verified these results for the special 
case of the Gaussian as an analyzing signal. In fact, it was shown that if the quotient 
is not in L2 then a 'good' Gabor expansion does not exist. 

Selection Procedure For a given signal /, compute the Zak transform of / 
and determine its zero set. From a library, choose g's whose Zak transform zero set 
is contained in the zero set of Z(f). Consider the quotients (11). The smoother the 
quotient, the more rapid the decay of the Gabor coefficients in the sense described 
by harmonic analysis theorems. 

Computer experiments have verified these comments in the special case of the 
Gaussian g with signals / taken from the Hermite functions. It should be pointed 
out that although the theory is about analog signals computation must take place on 
the discrete level. 

If the Zak transform of / has two zeros in the unit square then the harmonic 
analysis criteria can point, say, to a Gaussian type g having exactly one of these zeroes 
in the unit square but from a more pattern recognition point of view it might better to 
choose a g whose Zak transform zeroes match exactly the zero set of Z{f). Preliminary 
studies bear out this possibility. A Hermite function having exactly three zeroes in 
the unit square was taken as the the analyzing signal. Higher order Hermite functions 
were expanded relative to the Gaussian and relative to the analyzing Hermite function. 
The Hermite analyzing signal produced a more compact representation in most cases. 

When available, Tayl' r series expansions at the zeroes can be matched as much 
as possible. 

A.3    Generalized Gabor Expansions 

A signal / will not always have a Gabor expansion relative to an analyzing signal 
g.   The selection procedure of the previous section establishes rules for degrees of 
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compatibility between / and g based on the comparison of their Zak transforms, 
either by smoothness of the quotient or optimal matching of zeroes. However, it can 
happen in some applications that a fixed g must be taken. The problem is then to 
modify the definition of Gabor expansions so that an / can be expanded as a modified 
Gabor expansion. Again our goal is to produce an adaptive procedure which depends 
on both / and g. 

The main idea is that the definition given of Gabor expansion implicitly depends 
on the lattice Z and that by extending the lattice, we can guarantee Gabor expansions. 
More precise results for the Gaussian case appear on [30] which include algorithms of 
Gabor coefficient computation will be described below. 

Set <7i = e-irt and (72 = {9\)ol — e-7^'") . The Zak transforms of g\ and #2 

vanish uniquely at the point x = y = | and x = |, y = 0, respectively, in the unit 
square. Denote the r-times continuously differentiable functions in the plane by Cr. 
The first result we have is that if Z{f) € Cr, then 

Z{f)=pZ{g,) + qZ{g2), 

where p and q are trigonometric series in Cr, i.e., 

p{x,y)= E Ew2^"^, (12) 

mGZ n£Z 

If r < 2, say, then we can write 

/ =   IJ   1J OmnC^Omn +   E   E ^mn^mn, (13) 
m€Zn£Z m£.Z ndZ 

where 

EE lamn |2<00, 
TTl       ft 

EEl6mn|2<00. 
m     n 

Since «72 = (,^i)o 1 > we can write ( 13) as 

m£Z n£Z 

where cm2n = amn and cm2n+ bmn. The lattice of the expansion is Z x |Z. The 
overall effect is to double th sari ,g rate. Similar results can be found in the 
language of frames in [18]. 
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The proof of ( 12) as given in [5] depends on a partition of unity argument adapted 
to the Heisenberg group and easily generalizes. In particular, the choice of the Gaus- 
sian gi and g? are arbitrary and can be replaced by any two distinct time-frequency 
translates of the Gaussian g = e~ . In general, results of the form ( 12) depend 
solely on the disjointness of the zero sets of gi and #2 and can be extended to any 
number of analyzing signals. Results of the form ( 13) require that these signals be 
related by time-frequency translates. 

The central result in [30] is that q can always be taken as a trigonometric poly- 
nomial whose coefficients are explicitly computable. Uniqueness and algorithms con- 
structing p and q are given in [30]. A quantitative relationship is established between 
the desired smoothness of p and the degree of the trigonometric polynomial q. Com- 
puter experiments have been carried out for the Gaussian. Other important special 
functions whose role is more than an analyzing signal but is also part of the applica- 
tion have been studied. In particular, Hermite functions are intrinsically interesting 
in many applications including image coding, computer vision and human visual per- 
ception [22]. 

The main result in [30] is that for Z{f) € C3, we can uniquely write 

Z{f) = pZ{g1) + qZ{g2), 

where p (i C2 and 9 is a trigonometric polynomial of degree 3 whose coefficients are 
explicitly computable in terms of the partial derivatives of Z{f) at x = y = |. Recent 
results [20] have implemented the computation of p and q soley using Zak transform 
methods. 

The Fourier transform plays a major part in [1] and [30]. Functions are decom- 
posed into their eigen vector subspaces relative to the Fourier transform which on the 
plane is given by the linear operator 

J = 
" 0     1 
.-1    0 

A.4    Digital Computations 

Gabor expansions must be finitized for digital computations. Recent efforts [4, 23, 32] 
have subjected Gabor-expansions to the same periodization and sampling procedures 
which underlie the classical Fourier sampling theory and have contrasted results to 
standard truncation and sampling. The main digital Gabor expansion formula will 
be described below but the main point to be emphasized is that the analyzing signal 
translates undergo periodization creating overlap. In the Fourier theory, the only 
relevant periodization occurs in the expansion coefficients since the basis functions 
remain unchanged under periodization. The appearance of periodized analyzing sig- 
nals in the digital Gabor expansion case is a reflection of the nonlinearity of such 
expansions. 

Suppose a signal / has a Gabor expansion 
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satisfying ICmezHnez I Omn |2< oo- The Gabor coefficients are uniquely determined 
by the norm-square finite energy condition. In general, the system 

{9mn '     m,n £ Z} 

is not orthogonal so straightforward computation of Gabor coefficients is not always 
possible. The design of accurate and stable algorithms for computing Gabor coef- 
ficients (analysis) an'1, for computing input signal from Gabor transform methods 
useful signal processing tools. This step is intimately tied to the form and meaning 
assigned to digital Gabor expansions. We will review briefly how periodization sam- 
pling procedures force such digital Gabor expansions. Such expansions as contrast to 
more standard forms highlight the tradeoff between sampling rate and aliasing errors. 
For simplicity, choose integers M > 0 and iV > 0 as sampling rate and periodization 
interval. Periodize / mod N. 

fN{t) = J2f{t + jN), 
jaz 

and sample fx at rate jf. 

M~ + *) = E/(^ + fe + in (14) 

0<m<M,  0<A;<iV. 

The resulting //-tuple of values, L = MN, is the digital signal corresponding to /. 
The independent parameters M and ./V are usually fixed by a priori information in a 
given application. 

The samples ( 14) are related to Zak transform samples by 

By the second fundamental formula, these samples equal 

_     _    N-lM-l 

N'M't^Zo 

where 

A-s =   X/   X/ ar+r'M,s+s'N- 
r'ezs'ez 

A similar argument is the basis for finitizing the Fourier transform. However, since 
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n   m,       „,  w "    m 

we can rewrite ( 15) as 

N-l M-l 

*=0   r=0 ■'v     m 

By formula ( 14), we have the desired finite Gabor expansion 

N—l M—l 

MTJ + *) = E E Ar.igM~ 4- k), (16) 
m s=0   r=0 m 

0<m<M, 0<n<N. 

The periodized analyzing signal translates 
77? 

igMü + k),   0<r<M,0<s<N 

form a basis for signal expansion in L{Z/L), L = MJV, and were introduced in [4]. 
Algorithms for computing the Gabor coefficients of the finite Gabor expansion ( 16) 
were derived in the work and increased resolution procedures were established. 

The overlapping of the basis signals (5rs)// around the sampling interval intro- 
duces additional programming effort and at times aliasing errors which must however 
be accounted for. Code provided in this proposal will compare the benefits of this 
additional effort o standard truncation-sampling approaches and make the optimal 
decision. 

A.5    New Algorithms for Computing Gabor Coefficients 

Several algorithms are by now standard for computing Gabor coefficients. A summary 
of two appear in [3] along with the basic constraints and tradeoffs. 

The biorthogonal approach introduced in [12] depends on solving the equation 

Z{h){x,y)Z-{9){x,y) = l. (17) 

The function h is called a biorthogonal of g. If Z{g) is continuous then a solution 
h G L2{${) need not exist. Neglecting this point for the moment, if some h satisfying 
( 17) is found then the Gabor coefficients can be computed by the formula 

Omn =< /,/W >, (18) 

which is an immediate result of the first fundamental formula. 
The problem of this approach for continuous Z{g) is that since h need not be in 

L2{$t) the computation ( 18) can be difficult to carry out. We propose a generaliza- 
tion which has the effect of localizing Gabor coefficient computation and producing 
stable local computations by 'delaying' the instability to regions removed from some 
initialization. We will explore the approach for the Gaussian g = e-77' . 

Although ( 17) cannot be solved for h € i>2(^), we can solve 
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Z{h1){x,y)Z-{g){x,y) = l+e2™, (19) 

Z{h2){x,y)Z*{g){x,y) = l+e2*iy, (20) 

for ^i and /^ in Z (3f).  In this case, h2 = hi, the Fourier transform of hi but this 
will only be the case when g = g. From the first fundaments! formula 

<h 

-I !' 1)9mn ^       1    n 

25^11 >— S   Q 

m = n = 0 orm = 0,n = l 
otherwise, 

m = n = 0 orm = l,n = 0 
otherwise, 

The algorithm proceeds by first precomputing hi and /i2 and then computing 

brS=<f,{hi)rs>,    r,s£Z, (21) 

Cro=</,(Äi)rO>,    reZ. (22) 

Formula ( 19) and ( 20) imply 

Ks = Ors + ar,s+l, (23) 

CrS = Ors + Or+l,*- (24) 

Assuming that aoo is known, the computations ( 21) and ( 22) can be placed ( 23) in 
and ( 24) to compute all ars. 

The computations are locally stable about aoo but by analyzing the impulse re- 
sponse related to the difference equations we see that the resulting transfer function 
is only marginally stable. The choice of initialization at «oo is arbitrary and similar 
results can be derived about any initialization. Stable global algorithms require a 
precise understanding of the branching that can occur at points away from an initial- 
ization and rules for providing a new initialization at the 'boundaries of stability'. 

An increasing degree of smoothness of h can be achieved by replacing 1 + e27rix 

in ( 20) by trigonometric polynomials having higher order zeroes at x = y = 1/2. 
However, the increasing degree of smoothness of h is paid for by an increasing com- 
plexity of the synthesis algorithm including increasing initializations and instability 
as measured by the impulse response poles on the unit circle (equal to the degree 
of the poles). The quantification of the tradoff between increased smoothness and 
complexity / instability of synthesis algorithm including measurement of bounds for 
stability will be studied in this proposal. 
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B    The Ambiguity Function 

The results of this section were first proved in a series of papers [26, 27, 28, 29] in the 
early part of the 1960s and provided much of the theoretic framework during the fol- 
lowing decade for radar signal synthesis. Throughout, we work with the unsymmetric 
form of the cross-ambiguity function of two signals /, <? € L2{^t). 

A{f, 9)in, v) = j fWii - v)eMutdt. (25) 

There are two important ways to view cross-ambiguity functions. First we can con- 
struct the parametrized product 

K(t) = f{t)g'{i - v) (26) 

and form A{f,g){u,v) as the Fourier transform of hv{t) : 

A{f,g){u,v) = Jhvit)e-2™tdt (27) 

In signal processing, A{f,g){u,v) is called the short-time Fourier transform. The 
function g(t) is viewed as a window at the origin and g{t — u) as a sliding window 
which for a particular o is centered at v. The parametrized product hv{t) presents a 
windowed version of / around v. 

It is easy to show that A{f,g){u,v) € I2(3J) and 

M(/,<7)IIHI/II2IMI2- (28) 

In fact 

< A{f1,g1),A{f2,g2) >=< /i,/2 >< g2,gi > ■ (29) 

Also, we can recover the windowed function by the Fourier inversion formula 

f{t)g*{t - v) = J Aif,g){u,v)e2*itudu. (30) 

We can go one step further by taking the Fourier transform on both sides with respect 
to the v variable : 

m{gr(y)e2*tyt = J J A{f,g){u,v)e2^-yvUudv. (31) 

This separation property under the Fourier transform has been shown to be necessary 
and sufficient for a cross-ambiguity function. The left-hand side of ( 31) has also been 
identified as a complex energy density function for complex envelope / and g. That 
is 

fmriyy^syst (32) 
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can be interpreted as the differential complex energy in a bin 8y by 8t located at y 
and t, where the total complex energy is simply the inner product 

Ec=<f,9>= j f{t)g*{t)dt. (33) 

Equation (31) shows that this measure of energy density may be computed by evalu- 
ating the two-dimensional Fourier transform of the cross-ambiguity function of / and 
g at the point (f, y). In this light it should not be surprising to find A{f,g) appear in 
other ways that relate to signal energy - see the discussion of Weyl-Heisenberg frames 
in section 4 of this paper. 

A second way of writing the cross-ambiguity function is as an inner product 

A{f,g){u,v)=<f,guv>, (34) 

where guv{t) - g{t — M)e2ir,ut. Since 

g^{t) = e2*iuv{g).uv, (35) 

we have by the Plancheral theorem that 

4(/,0)(u,u)   =   <f,g^> 

=   e"2™" / f{t)g{t - v)fi2*ivtdt 

=   e-2^A{f,g){-v,u). 

If we restrict (u, v) to a lattice of points (mM, niV), m, n G Z, the corresponding 
set of samples 

A{f,g){mM,nN)=< f,gmM,nN>,   m,neZ (36) 

is called the discrete short-time Fourier transform of / relative to the analyzing signal 
g and the lattice determined by {M,N). The set of functions 

{gmM.nN : m,n € Z}, (37) 

is usually called a Weyl-Heisenberg wavelet system but in this work we will call it 
simply a Gabor wavelet system. It will be denoted by (<7, M, N). We can ask whether 
from the set of inner products ( 36) a numerically stable algorithm reconstructs or 
approximates /. As explained in [17] the ques'ion can be answered affirmatively if 
and only if the following condition is satisfied : 
Frame Condition    There exist constants 0 < A < B < oo such that for all / € 
L2m, 

A II / ||2< EE l< f,9mM,nN >?< B \\ f ||2 . (38) 
m     n 

In this case, we call {g,M,N) a frame and A and B frame bounds If, for some 
constant 0 < J5 < oo. 
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EEl</'^M,nN>|2=JB||/||2 (39) 
in     n 

whenever / € Z2(3i), we say that {g,M,N) is a tight frame. Condition ( 38) easily 
translates into a statement about cross-ambiguity function samples : 

^ II / l|2< E E I ^(/' 9){mM, nN) |2< B \\ f \\\ (40) 
m     n 

Our tools for analyzing frame conditions are based on the following analog sum- 
marized in [16]. 

Radar Theorem (1960) 

Theorem 5 If f, g £ L2{Wj, then 

IJ | A{f,g){u,v) |2 e-^™+^dudv (41) 

= A{f){y,-x)A*{g){yr-x). 

Theorem 6 If fi, /a, gi, #. G L2{^t), then 

/ / AifrJJiu, v)A*ig1, g2){u, v^^+^dudv (42) 

= A{f1,g1){y,-x)A*{f2,g2){y,-x). 

In [24], the Poisson summation formula was used to derive discrete analog of 
theorems 1 and 2. We describe these discrete analogs. The exact conditions on / and 
g required for these formulas are given in [24]. 

Theorem 7 E -W + nN)g*{t + nN-j-) 

Theorem 8 £ £ | A{f, g){mM, nN) |2 

m     n 

1 EE */)(£. >-(«)(^). 

Theorem 9 ,£T,Aifi,9i){rnM,nN)A*{f2,g2){mM,nN) 

1  EZMhJ^-Wurii-^). MiVt' n ^ M7    "'""'"N'M 
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C    Applications 

We say {g, fa, IM) satisfies Condition A, if A{g){jj,mM) = 0, unless m = n = 0, 
First we show that there exists g € L2{^t) satisfying condition A. Define 

m     f 1,   0<t<N, .... 
^ = \0,   otherwise. ( 6) 

Since N < -h, 

TTl 
9o{t)9o{t - Jj) = V,   unless m = 0. (47) 

Condition A follows from 

Ai9o){~ 0) Jo 
ra = 0, 
otherwise. 

In [24] the following result was proved. 

Theorem 10 {g,M,N) is a tight frame if and only if g satisfies condition A. In this 
the frame bound is 

ß = id!. (48) 

The proo of the theorem and other results found in [24] rest on the application of 
the discrec; formulas to control the middle sum of the frame condition by imposing 
constraints on the values of the auto-ambiguity of the analyzing signal g over the dual 
lattice. Usually, no condition except for square-intcgrability is imposed on /. The 
application of these ideas to the design of adaptive methods depends on imposing 
joint conditions on the auto-ambiguities of / and g on the dual lattice. 
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